VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELGAUM

SYLLABUS FOR 2015 -2019

ADDITIONAL MATHEMATICS - II

(Mandatory Learning Course: Common to All Branches) (A Bridge course for Lateral Entry students of IV Sem. B. E.)

Course Title: Additional Mathematics - II Contact Hours/Week : 03 Total Hours: 40 Exam. Marks : 80 Course Code : 15MATDIP41 L-T-P : 3-0-0 Exam. Hours : 03 Credits : 00

Course Objectives

The mandatory learning course **15MATDIP41** viz., **Additional Mathematics-II** aims to provide essential concepts of linear algebra, introductory concepts of second & higher order differential equations along with methods to solve them, Laplace & inverse Laplace transforms and elementary probability theory.

MODULE	RBT Levels	No. of Hrs
MODULE-I Linear Algebra: Introduction - rank of matrix by elementary row operations - Echelon form. Consistency of system of linear equations - Gauss elimination method. Eigen values and eigen vectors of a square matrix. Application of Cayley-Hamilton theorem (without proof) to compute the inverse of a matrix-Examples.	L1 & L3	08
MODULE-II Higher order ODE's: Linear differential equations of second and higher order equations with constant coefficients. Homogeneous /non-homogeneous equations. Inverse differential operators. Solutions of initial value problems. Method of undetermined coefficients and variation of parameters.	L1 & L3	10
MODULE-III Laplace transforms: Laplace transforms of elementary functions. Transforms of derivatives and integrals, transforms of periodic function and unit step function-Problems only.	L1 & L2	08
MODULE-IV Inverse Laplace transforms: Definition of inverse Laplace transforms. Evaluation of Inverse transforms by standard methods. Application to solutions of Linear differential equations and simultaneous differential equations.	L1 & L2	08

<u>MODULE-V</u> Probability: Introduction. Sample space and events. Axioms of probability. Addition and multiplication theorems. Conditional probability – illustrative examples. Bayes's theorem-examples.	L1 & L2	06

Course Outcomes: On completion of this course, students are able to,

- 1. Solve systems of linear equations in the different areas of linear algebra.
- 2. Solve second and higher order differential equations occurring in of electrical circuits, damped/un-damped vibrations.
- 3. Describe Laplace transforms of standard and periodic functions.
- 4. Determine the general/complete solutions to linear ODE using inverse Laplave transforms.
- 5. Recall basic concepts of elementary probability theory and, solve problems related to the decision theory, synthesis and optimization of digital circuits.

Question paper pattern:

- The question paper will have **ten** full questions carrying equal marks.
- Each full question consisting of **16** marks.
- There will be **two** full questions (with a **maximum** of **four** sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer **five** full questions, selecting **one** full question from each module.

Text Book:

B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, New Delhi, 43rd Ed., 2015.

Reference books:

- 1. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed., 2015.
- 2. N.P.Bali and Manish Goyal: Engineering Mathematics, Laxmi Publishers, 7th Ed., 2007.